Search results

Search for "Au NPs" in Full Text gives 64 result(s) in Beilstein Journal of Nanotechnology.

Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection

  • Le Hong Tho,
  • Bui Xuan Khuyen,
  • Ngoc Xuan Dat Mai and
  • Nhu Hoa Thi Tran

Beilstein J. Nanotechnol. 2024, 15, 426–434, doi:10.3762/bjnano.15.38

Graphical Abstract
  • nanoparticles (Au NPs) were the first to be fabricated in DESs [28][29]. SERS platforms based on Au NPs-DES whose sensitivity and durability are competitive to the other materials were successfully constructed [29][30]. However, no attention has been paid to the potential of DESs in the fabrication of Ag NPs
  • . The similarities between Ag NPs and Au NPs, with the higher LSPR and SERS performance of Ag NPs [18][31], led to the innovative idea of Ag NPs synthesis in DESs. In this work, we present a novel strategy to fabricate Ag NPs and demonstrate our hypothesis about the application of DESs in stabilizing Ag
PDF
Album
Full Research Paper
Published 16 Apr 2024

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ], Photodiagnosis and Photodynamic Therapy, vol. 30, by J. Depciuch; M. Stec; M. Kandler; J. Baran; M. Parlinska-Wojtan, “From spherical to bone-shaped gold nanoparticles - Time factor in the formation of Au NPs, their optical and photothermal properties“, article no. 101670, Copyright (2020), with permission from
PDF
Album
Review
Published 04 Oct 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • transcellular transport. They supported their observations using PEGylated Au NPs of various sizes (15, 50, and 100 nm) in various tumor models. In addition, they characterized the morphology of blood vessels and demonstrated that the vessels with NP-transporting cells were longer and had a greater volume and
  • mechanism based on the transcellular pathway as the dominant mechanism of NP transport through the endothelium. They supported their observations by quantitatively measuring the uptake of 15, 50, and 100 nm PEGylated Au NPs in various mouse tumor models using ICP-MS. Similarly, in a Zombie mouse model, they
  • of tumors may also contribute to faster intravasation and extravasation of cancer cells, which has been confirmed in both in vitro and in vivo studies. Peng et al. demonstrated that the exposure of breast cancer cells to TiO2, SiO2, and Au NPs significantly accelerates the intravasation and
PDF
Album
Review
Published 08 Mar 2023

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • ability of the β-cyclodextrin polymer (PolyCD) to act as a symbiont of both MNPs and BMNPs [14]. Specifically, functional groups of PolyCD (i.e., amines, primary and secondary alcohols, and hemiacetals) are involved in the direct reduction of gold ions to Au NPs (Figure 1). PolyCD-capped Au NPs showed an
  • metallic Au NPs, the new diagnostic resonance at 8.30 ppm was detected in 1H NMR spectra of nanoG (Figure 3A, green trace). According to the literature, this signal suggests the formation of formic acid as a decomposition product during the gold reduction process in the carbohydrate/Au(III) system [25]. To
  • at rt ≈ 25 °C. The chemical shifts are expressed in ppm using acetone as an internal standard. NMR analyses and Raman analysis (Supporting Information File 1, Figure S1) were carried out according to previously reported protocols [14][30]. Preparation of PolyCD Au NPs and PolyCD Au@Ag BMNPs NanoG and
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • combined with metal nanoparticles, resulting in enhanced photoactivity of Au-decorated ZnO nanocrystals for photoelectrochemical water splitting [9], improved photodetection performance of ZnO nanofibers decorated with Au NPs [10], or enhanced photocatalytic activity of ZnO doped with Au NPs [11]. Moreover
  • ) [12] was carried out as well. Chou et al. employed a simple and rapid method, namely pulsed laser-induced photolysis to develop Au NPs on the surface of ZnO nanorods fabricated by the sol–gel method (Figure 2c,d) [38]. Various irradiation times were tested, indicating that a short irradiation time was
  • HAuCl4 to controllably grow Au NPs on the ZnO nanorods and obtained effective substrates for the ultrasensitive detection of organic pollutants in water, which could be recycled multiple times [45]. Powdered ZnO–Au nanocomposites were synthesized via hydrothermal reactions, a simple, facile, and
PDF
Album
Review
Published 27 May 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • [11]. Afterward, Torimoto et al. used a sputter coater for the synthesis of small gold (Au) NPs by sputtering an Au target onto a thin layer of an ionic liquid (IL) [12]. This paper [12] published in 2006 initiated a series of similar works in several labs which, were focused on the deposition of
  • diluted solutions [77] as shown for the first time by Turkevich in 1951 [92]. Turkevich and co-workers studied the reduction of HAuCl4 by citrate anions (which also plays the role of a stabilizer for the Au NPs) at different temperatures and different reagent concentrations [92]. By means of transmission
  • underlying, kinetically dominant, elementary steps. So, their “organizer” theory looked very complicated as compared to the simpler La Mer mechanism. As a result, the work [92] had been cited scarcely until the production of Au NPs became a hot research topic. The reduction of Au ions by sodium citrate was
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • culture medium outside the cells [11]. According to a previous study by Fröhlich et al., the access of Ag-NPs into other organelles depends on the particle size [32]. In the same way, Berry et al. demonstrated that the uptake of NPs is limited by the dimensions of the nuclear pores. Gold nanoparticles (Au
  • -NPs) with a size of 5 nm appeared in the nuclei of cells, whereas particles larger than 30 nm were maintained in the cytoplasm [33]. In the present study, we used Ag-NPs with a size of 80 nm, thus, no Ag agglomerates were found in the nucleus. In addition, aggregated NPs as well as single NPs are
PDF
Album
Full Research Paper
Published 02 Aug 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • . Asharani et al. [49] also reported the toxic effects of Ag NPs on zebrafish embryo mortality, delay in hatching, heart rate reduction in the embryo and also non-lethal effects of Au NPs on embryo development. Muller et al. [50] stated that 1.88 μM of dissolved Cu2+ inhibited the proteolytic activity of the
PDF
Album
Review
Published 12 Feb 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • can affect the expression of the ribosomal subunit that interacts with sulfur- and phosphorus-containing groups of proteins, even in the cell wall and plasma membrane bacteria [165][166]. Cui et al. (2012) showed that Au NPs prevented the combination of a ribosomal subunit with tRNA and collapsed the
PDF
Album
Review
Published 25 Sep 2020

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • suspension of Au NPs in water (inset on the right) obtained from compound 4. (a–e) TEM images of the gold nanoparticles obtained from the dendrimer compound 4 at different magnifications. (f) Analysis of the size distribution of the gold NPs from the TEM image (a). Scale bars: 100 nm (a), 20 nm (b), 2 nm (c
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • antireflection abilities [13][14][15]. These composite microstructures have also shown to maximize the path of the Raman excitation laser beam within the substrate, leading to signals with higher intensity. Samransuksamer et al. [16] used TiO2 nanorods decorated with Au NPs, deposited via precipitation by
  • template for the growth of Au NPs (in the following the samples will be referred as TiO2/Au). Both TiO2 film and Au NPs were synthetized by vapor phase deposition techniques (involving pulsed laser deposition and thermal evaporation) avoiding the use of solvents, while accurately tuning the morphology and
  • the plasmonic properties. Specifically, TiO2 films with different porosities have been deposited, with different Au NP sizes and coverages. Then, the growth parameters of TiO2 and of the AuNPs were selected in order to obtain the maximum SERS enhancement. In a second step, the Au NPs were
PDF
Album
Full Research Paper
Published 14 Jul 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • substrates covered with gold nanoparticles (Au NPs) were prepared. For the latter method, the substrates were cleaned with deionized (DI) water and dried with nitrogen before coating them with 10 µL of a 1:2 v/v% solution of Au NPs (80 nm gold nanospheres, citrate NanoXact 0.05 mg/mL, nanoComposix) and
  • down passively. This half step is also intuitively included in the standard procedure without pulsed gas inflow (Figure 8a). All NW lengths are compared for NWs grown out of Au NPs (Ø 80 nm) (Figure 8 and Figure 9). This allows the comparison of the NW lengths, which is otherwise additionally
  • film edges as well as using Au NPs (Ø 80 nm) were performed. In contrast to SnO2 NWs using Au NPs, a laterally aligned NW growth was observed at these edges even at a process pressure of 200 mbar. This can be explained by the locally changed process conditions in the surroundings of the dense competing
PDF
Album
Full Research Paper
Published 28 May 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • , Latvia 10.3762/bjnano.11.6 Abstract In the present paper, we investigate the effect of heat treatment on the geometry and mobility of Au nanoparticles (NPs) on a Si substrate. Chemically synthesized Au NPs of diameter ranging from 5 to 27 nm were annealed at 200, 400, 600 and 800 °C for 1 h. A change in
  • ]. Due to their inert state, geometrical diversity and convenient synthesis, Au NPs are an attractive model system for nanotribological manipulation experiments [5][6][7][8][9][10][11][12] and simulations [13]. Additional flexibility is provided by the ability to tune the properties of the NPs by varying
  • melting can be achieved at a significantly lower temperature than the melting temperature of bulk Au [17]. In this study, chemically synthesized faceted Au NPs were annealed at different temperatures between 200 and 800 °C, which resulted in rounding of the NPs. The particles were then displaced with an
PDF
Album
Full Research Paper
Published 06 Jan 2020

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • preparation (Figure 1A and Figure 1D). The stability of the histograms over 3 days led us to believe that during this time interval there is only negligible diffusion of the Au NPs into the Bi2Se3 substrate. The material of the particles was mechanically different as observed on the phase shift image (Figure
  • and the contrast of the surface contact potential of Au particles (Figure 2A, B) were measured within the same line profile. Au NPs of greater height showed lower values of the surface contact potential according to the non-linear curve limited to a Δ surface contact potential between −50 and −60 mV
  • sample and after 72 h. (A, B) Determination of the surface contact potential decrease and the height of the Au NPs; (C) surface contact potential as a function of the Au NP height. Single-point I–V curves performed during the mechanical contact with the Pt-coated conductive tip on a) bulk Au; b) 107 nm
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • composites with 2.5 wt % Au NPs was 4.76 times as high as that of bare CBO microrods. Additionally, the 0D/1D Au/CBO composite also exhibited ideal stability. The significant improvement of the photocatalytic performance could be attributed to the improved light harvesting and increased specific surface area
  • materials promotes the dispersion and stability of 0D nanomaterials. Among the noble metal NPs, Au is considered to be one of the most promising materials because of its high photocatalytic activity, low toxicity and good biocompatibility [23][24][25]. In addition, size, shape and environment of the Au NPs
  • affect the SPR of Au NPs. The Au NPs promote the rapid separation of charge carriers of semiconductor [10][26][27]. Thus, we attempt to use 0D Au NPs to decorate 1D CuBi2O4 (CBO) microrods to obtain a new type of efficient 0D/1D composite photocatalyst. Herein, 0D/1D Au NP/CBO microrod composites were
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019
Graphical Abstract
  • dyes without AuNTs under the same experimental conditions. Moreover, it is well known from literature that the utilization of Au NPs of the same size is associated with higher SERS enhancement factors [18], therefore suggesting that the performance of the AuNTs can be further improved by employing size
  • -selected nanospheres. Conclusion In this study, the performance of SERS labels based on Au NPs and organic dyes resonant at 633 nm was investigated by a combination of Raman and TEM analysis. The AuNTs were designed in order to support multiple electromagnetic hot spots for any polarization direction of
  • ) Representative TEM images of MGITC, MG and HITC AuNTs. (C) Size histograms of HITC (green), MG (black) and MGITC (red) AuNTs, each one composed by several Au NPs. (D) GSERS bidimensional map for a AuNT embedded in PVA under excitation at 633 nm with light polarized along the y-axis. (E) GSERS bidimensional map
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • encapsulation in nanoparticles (NPs), increases precision and success of the procedure. Alternatively, gold NPs (Au-NPs) allow for localized and precise application of LTS [7][8]. Nanomaterials are foreign materials and, hence, might elicit adverse effects when they come in contact with bodily tissue, vessels
  • -lactide) (PLLA), and Au-NPs used in LTS on cells of the brain, namely microglial and neuron-like cells. Si-NPs were further characterized regarding their interactions with cells by using organotypic hippocampal tissue slices and primary cultures. All types of NPs were found in microglial cells and neuron
  • by both cell types. However, uptake was found to be more prominent in RBE4 cells compared to MDCK II cells [18]. After exposure of rat primary cultured brain microvessel ECs (rBMECs) to Au-NPs, smaller NPs were demonstrated to be taken up to a higher extent compared to larger NPs. Overall, only the
PDF
Album
Full Research Paper
Published 25 Apr 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • nucleation centers for the anchoring the Au NPs) was conducted using XPS. The chemical modification caused by the plasma treatment results in the presence of hydroxy, carbonyl and carboxyl groups [36]. Furthermore, Au nucleation centers occur mainly in the proximity of oxygenated defects created during the
  • plasma treatment [37]. These results are summarized in Supporting Information File 1, Figure S4 and Table S1. The presence of thiols attached to Au NPs was further confirmed by XPS analysis. Figure 4a shows the comparison of the XPS survey spectra recorded on the samples and a reference (gold on CNTs
  • oxygenated defects are homogeneously distributed in the CNTs used, we expect Au NPs to be homogeneously distributed on the whole surface, that is, not in direct contact to the substrate. A suspension of these functionalized MWCNTs was prepared using N,N-dimethylformamide (DMF) purchased from Alfa Aesar (99.8
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • be adjusted by heterogeneous nucleation of NPs on noble metal seeds [21][22]. Additionally, such bifunctional Fe3O4–Au NPs are potentially applicable for targeted drug delivery, enhanced hyperthermia, multimodal imaging and theranostics [8][23][24][25][26][27]. In this work, we present the first size
  • -dependent study of hybrid Fe3O4–Au NPs with Janus structure for application in theranostics where improvements in MRI and MPH were demonstrated. Increasing the magnetic NP diameter from 6 to 44 nm, we show the gradual transition of their lattice parameters from an intermediate value between maghemite γ
  • theranostic application of NPs in MRI and MPH. We conclude with a proof-of-principle in vitro study showing efficient induction of cell death. Size and morphology All Fe3O4–Au hybrid NPs were synthesized by the thermal decomposition of iron pentacarbonyl on the surface of Au NPs in a high-boiling solvent
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • to 64.9 due to an increase in oxygen vacancies. The response and the recovery time are about 7 s and 30 s, respectively [179]. WO3 NFs/NTs functionalized by Pt [168][187], Pd [107][188], Cu [101], Ru [189], Rh2O3 [106], Au NPs [109], RuO2 NPs [189], La2O3 [104] as well as Pd-loaded ZnO nanocubes [1
  • ] have been extensively applied for sensing of acetone, ethanol, toluene, formaldehyde and volatile organic compounds (VOCs). WO3 NFs functionalized by Au NPs exhibit improved VOC sensing properties. Noble metals onto metal oxide NFs reduce the activation energy, thus increasing their efficiency [109
  • ]. The average diameter of as-spun fibers is 412 nm which, after annealing, reduces to 315 nm. The fiber diameter increases with increasing Au content. The average diameters of the WO3–Au-0.01M, and WO3–Au-0.1M composite NFs are 350 nm, and 370 nm, respectively. Au NPs act as nucleation sites (seed) on
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • metals or rare-earth metal containing alloys or intermetallic phases. Solution synthesis of any oxide-free RE-NP was first reported by Wagner and co-workers using alkalide reduction of GdCl3 in THF solution [6]. Scalable air- and water-stable core–shell Gd@Au-NPs were obtained by using the same strategy
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization

  • Axel Seidenstücker,
  • Stefan Beirle,
  • Fabian Enderle,
  • Paul Ziemann,
  • Othmar Marti and
  • Alfred Plettl

Beilstein J. Nanotechnol. 2018, 9, 1390–1398, doi:10.3762/bjnano.9.131

Graphical Abstract
  • gas flow and adjustable sample temperature [28][29]. Spherical Au NPs with controlled size and inter-particle distance are fabricated by a well-proven micellar technique [30][31][32][33][34][35]. These particles should also be applicable as a mask in NP-assisted plasma etching of conical pores in
  • membrane. Experimental details are summarized in Table S1 in Supporting Information File 1. First, in Figure 1a an approximately 55 nm thick sacrificial layer of silicon oxide is deposited on top of the SiN membrane by electron beam physical vapor deposition (EBPVD). After that, Au NPs (typical diameter ca
  • removal of the polymers, the reduction of the Au ions, and the formation of spherical Au NPs are obtained by exposure to hydrogen plasma [32]. Subsequently, the particles will serve as an etching mask during the RIE process. Hereafter, examples with 100 nm distance between the centers of adjacent NPs will
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • that although a negligible inhibition of mycelium growth was observed (Figure 7, and Figure S8 and Figure S9 and Table S3 in Supporting Information File 1), sporulation was inhibited almost completely (99.8%) on slants supplemented with Au/TiO2. In order to understand the function of Au NPs in the
  • inhibition of sporulation, colloidal Au NPs (ca. 12 nm) were investigated by the same method (Figure S11, Supporting Information File 1). It was found that unsupported Au NPs did not show inhibition of sporulation in the dark, and only a slight inhibition under visible-light irradiation for A. melleus
  • . Accordingly, it is proposed that Au NPs do not intrinsically inhibit sporulation. It may be concluded that the Au–TiO2 heterojunction is necessary to influence the formation of sporangia and/or spores during the growth of mycelium. Although, further investigation is necessary for the mechanism clarification
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • response/recovery times. The various origins of these properties are commonly assigned to the following two phenomena: (i) a surface plasmon resonance (SPR) effect of plasmonic gold nanoparticles (Au NPs) could certainly take place and contribute to the electrical transport behavior for Au-decorated ZnO
  • [10][11]. SPR of Au NPs strongly depends upon the Au–ZnO matrix interface, as well as the dielectric properties of the surrounding ZnO matrix [12][13]. (ii) The AuNPs possibly deplete more carriers near the ZnO surface, which increases the charge density of ZnO and leads to enhanced interaction with
  • -oxide semiconductors are still of significant consideration. In this work, we propose a simple photochemical approach to synthesize Au NPs directly deposited on the surface of pre-synthesized ZnO nanostructures synthesized by chemical bath deposition on glass substrates. Morphological evaluation
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018
Other Beilstein-Institut Open Science Activities